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Abstract Cardiovascular imaging machines for disease diagnosis are widely
used to produce multiple types of data such as images and videos, which cardi-
ologists use to diagnose their patients of the right cardiac deficiency. However,
these machines deliver an abundant amount of data that demands quick anal-
ysis in order to assign the adequate treatment. Furthermore, the acquired data
quality varies depending on the acquisition conditions and the patient’s respon-
siveness to the setup instructions. These constraints are challenging to doctors
especially when patients are facing myocardial infarction (MI) and their lives
are at stake. In this paper, we propose an innovative real-time end-to-end fully
automated model based on convolutional neural networks (CNN) to detect MI
from videos produced by echocardiography, which is a non-invasive cardiovas-
cular imaging tool that plays a major role in the diagnosis of patients affected
or suspected with MI. Our model is implemented as a pipeline consisting of
a 2D CNN that performs data preprocessing by segmenting the left ventricle
(LV) chamber from the apical four-chamber (A4C) view, followed by a 3D
CNN that performs a binary classification to detect if the segmented echocar-
diography shows signs of MI. We trained both CNNs on a dataset composed
of 165 echocardiography videos each acquired from a distinct patient. The 2D
CNN achieved an accuracy of 97.18% on data segmentation while the 3D CNN
achieved 90.9% of accuracy, 100% of precision and 95% of recall on MI detec-
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tion. Our results demonstrate that creating a fully automated system for MI
detection is feasible and propitious.

Keywords 3D Convolutional Neural Network - Video Segmentation -
Myocardial Infarction - Detection - Echocardiography

1 Introduction

According to the World Health Organization, cardiovascular diseases (CVD)
are responsible for 30% of the annual mortality rate, affecting roughly 18 mil-
lion humans worldwide [1]-[2]. One of the prevalent cardiovascular disorders is
acute myocardial infarction (AMI) [3], commonly referred to as heart attack,
and it is pathologically defined as the death of the myocardial cells due to an
extended ischemia (limitation of the blood supply to the tissues) [4]. As soon
as ischemia happens, in most cases, the patient starts showing various clinical
symptoms such as chest pain or epigastric discomfort [5] which, if not treated
in critical time, will eventually lead to the death of the myocardial cells and
to an infarction [6].

Considering the alarming statistics revealed about myocardial infarction
(MI) death rates, specialists proclaim the urgent need to integrate machine
learning (ML) and deep learning (DL) into health-care systems to provide ad-
vanced and personalized assistance to patients [7]-[8]. Cardiovascular imaging
techniques, in particular, witnessed an evolution during the last two decades
[9] which enabled cardiologists to further develop their understanding of the
pathologies. Nevertheless, studies [10]-[11] show that relying on classical ap-
proaches to understanding the data generated by cardiovascular imaging ma-
chines is insufficient and requires modernization by integrating ML into the
process of data acquisition and processing. The tremendous ability of ML and
its powerful capability of analyzing a large quantity of data in a short time
while producing results of high accuracy and precision [12]-[13], would ame-
liorate the diagnosis of CVD and eventually elevate the chances of patients in
receiving a more targeted and customized treatment [14].

Echocardiography as a cardiac imaging test used in particular by cardiolo-
gists, is highly recommended by The American Society of Echocardiography in
view of its capability to assess both the cardiac function and structure [15]. The
test generates rapid, non-invasive and real-time views of the cardiac chambers,
offering detailed visualization of the heart’s functional and structural state
from different angles and planes, which allow cardiologists to predict signs of
MI in a patient almost instantaneously [16]. These features are unavailable in
other bedside assessments, hence echocardiography is becoming indispensable
to cardiologists [17]. Nonetheless, echocardiography tests produce large and
complex data that needs to be entirely exploited and understood in order to
make a complete diagnosis based on visual interpretation [7], which is highly
dependent on the level of experience of the cardiologist in question [18]. More-
over, in some cases, an important amount of the generated data remain unused
due to insufficient time and difficulty in interpretation [19]. Furthermore, data



acquisition is usually performed in emergencies, which often yields images of
low quality [20]-[21]. Consequently, this significantly decreases the accuracy of
the diagnosis [22]. Therefore, cardiologists along with researchers, have been
investigating the possibility of integrating automatic programs into cardiovas-
cular imaging machines to create a more reliable diagnosis process [23]-[24].

To address some of the above issues, several approaches have been devel-
oped in order to estimate the cardiac motion or mass. Some of which are based
on signal-processing analysis such as Fourier tracking [25], or metaheuristics
such as genetic algorithms [26], while some others use ML and convolutional
neural networks (CNN) [27]-[28]. However, these methods either heavily rely
on very specific and limited conditions of data acquisition (high-resolution
echocardiograms, high frame-rate, minimal noise) [24], or require the techni-
cian or the cardiologist to perform preliminary preprocessing steps to be able
to proceed with the prediction process [29].

In this paper, we propose a method to overcome the following issues: i)
subjective reading of the data that relies on expert cardiologists, ii) generated
poor-quality videos, iii) massive amounts of video preprocessing, and iv) man-
ual visual MI detection. Thus, the proposed solution is a of fully automated
pipeline consisting of a 2D CNN that performs data preprocessing followed by
a 3D CNN that performs binary classification to detect MI from echocardiog-
raphy videos. As a matter of fact, the occurrence of MI is strongly dependent
on signs of abnormalities shown in the behavior of the left ventricle (LV) wall
motion or volume [30], which is the bottom left chamber of the heart. There-
fore, our proposed pipeline begins with a 2D CNN that segments the LV from
an echocardiography video. Then, the segmented video is fed to a 3D CNN,
which extracts the relevant spatio-temporal features from it and uses these fea-
tures to detect the presence of MI. The input to the pipeline is an unprocessed
echocardiography acquired by a technician or a cardiologist from a patient,
and the output is the detection result. We trained our 2D and 3D CNNs us-
ing a dataset provided by Hamad Medical Corporation [31] composed of 165
transthoracic echocardiograms (TTE) belonging to anonymous patients.

The main contribution of this work is a fully automated pipeline for video
segmentation and MI detection from echocardiography, whcih is also an in-
discriminative pipeline that processes videos of different sizes, different frame
rates and different resolutions. The proposed method is an end-to-end robust
system that achieves 97.18% accuracy on data segmentation and 90.9% accu-
racy, 100% precision and 95% recall on MI detection. This system is robust in
that it performs well with low quality videos corrupted with intense noise. It
is also lightweight in that it does not require high memory or computational
power in order to be executed, which makes the system adequate to be em-
bedded in external devices.

In Section 2, we discuss existing research works related to our work. We
then explain in Section 3 the pipeline architecture and discuss details related
to the dataset. In Section 4, we explain the preprocessing techniques applied
to the dataset which is used as input to a 2D CNN. In addition, we give
details related to the 2D CNN architecture. We describe data preprocessing
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techniques applied to the processed videos before feeding it to the 3D CNN
in Section 5, in addition to detailing the 3D CNN architecture. In Section 6,
we describe the training processes and the evaluation metrics related to each
model, followed by a discussion of the results. Finally, in Section 7, we give
concluding remarks.

2 Related Work

Multiple image-processing based models that aim to evaluate the myocar-
dial motion to detect cardiovascular deficiencies have been produced over the
last few decades. In [32], a contour-based technique for detecting wall motion
abnormality by analyzing the temporal pattern of normalized wall thickening
was proposed. Epicardium and endocardium zones were manually extracted
from 14 images representing real-life patients. Subsequently, AHA 17-segment
model was used to detect regional wall changes in wall thickening with 88%
of accuracy. In [33], existing quantitative approaches were applied and tested
to identify regional LV abnormalities in patients with MI and wall motion ab-
normalities. A dataset of 4 different 2D echocardiography views and coronary
angiography were used to calculate the deviations of the contractions of the
regional segments of the LV wall. An abnormal segment was identified when its
deviation value is inferior to the mean contraction estimated over 10 normal
subjects. All the quantitative approaches that were evaluated achieved above
76% of accuracy.

The second approach of processing cardiovascular data mostly use ML and
DL algorithms. In [34], 723,754 clinically acquired Echocardiographic tests rep-
resenting 27,028 patients were acquired to predict 1-year mortality in patients
who had encountered heart deficiencies. The data videos were divided into 12
groups such that each group represented a different cardiac view. Then, 12 3D
CNN models were trained separately, such that each model was trained over
one data group. The AUC values of the models ranged between 69% and 78%.
The accuracy value of the 1-year mortality prediction in patients with heart
abnormality records was 75%. [35] used DL in order to assess regional wall mo-
tion abnormality in Echocardiographic images. Data from 300 patients with
history of MI were used and were divided into 3 groups such that each group
of data represented a specific cardiac abnormality. Data from 100 healthy pa-
tients were also added to the data groups. Then, 10 versions of the same CNN
architecture were trained and evaluated. The obtained CNN predictions were
compared with the predictions made by expert cardiologists. The AUC curve
produced by the cardiologists was similar to that produced by the CNNs (0.99
vs 0.98).

In [36], both electrocardiogram and serum analysis were used to detect
AMI in patients who were suspected of having MI within one hour of their
arrival to the care unit. The electrical activity of the heart produced by the 12-
lead electrocardiogram were analyzed. Moreover, several chemical substances
such as creatine kinase and myoglobin were measured. These parameters were



combined to perform a logistic regression analysis that led to the detection of
MI by 64% of accuracy, and 11% of false positive rate.

3 Methodology

One of the main goals of our work is to create a fully automated pipeline
for LV segmentation and MI detection to assist technicians and cardiologists
in the process of analyzing a patient’s echocardiography. This system must
be lightweight enough to be easily integrated into an embedded system, and
as efficient and accurate as possible. In emergencies, for example, the data
acquisition tend to be made quickly, which may impact the echocardiography
video quality. Moreover, the majority of the echocardipgraphy machines used
in hospitals produce low-quality videos of a frame rate below 30 frames per
second (fps). In the following sections, we give an overview of the pipeline
architecture and a description of the echocardiography videos acquired for
this work.

3 .1 Pipeline Overview

>

3D CNN for MI
detection

Sliding window: 2D CNN for Sliding window:
spatial | segmentation temporal
windowing windowing
Echocardiography video Segmented LV from the
frames echocardiography video frames

Fig. 1 Fully automated pipeline for MI detection, where the input is an echocardiography
video and the output is the prediction results

Figure 1 illustrates the flow of the automated pipeline where the input
consists of an echocardiography video called echocardiography video frames,
and the output is the detection result. The video frames are processed by the
sliding window technique which divides each frame into spatial windows of
equal dimension. The spatial windows are passed through the 2D CNN to seg-
ment the LV from each frame’s spatial windows. Once the segmented windows
are produced, they are reassembled into segmented frames. These segmented
frames are reassembled to produce a segmented video, where the order of ap-
pearance of each segmented frame is kept in the same order of appearance in
the original echocardiography video. The segmented video frames are labelled
in Figure 1 as segmented LV from the echocardiography video frames. These
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are then processed by another sliding window to produce temporal windows
of the same dimensions. The temporal windows are then passed through a 3D
CNN that classifies them into one of the following classes: abnormal (MI) or
normal (N). The final class of the input video is estimated as the statistical
mode of all the predictions of the frames constituting the video.

3 .2 Echocardiography Dataset

In collaboration with Hamad Medical Corporation in the State of Qatar,
we were able to gather a dataset of 165 animated echocardiography videos,
each from a distinct anonymous patient. The dataset was created by collect-
ing various echocardiography tests from the hospital’s archive. The patient’s
identities remain anonymous. The tests represent the A4C view, and have a
frame rate of 25fps. The prevalent problem during data collection was the cor-
ruption of videos due to either noise or distorted representation of the A4C
view, which usually consists in missing parts of the heart chambers that failed
to be acquired during the echocardiography test. In this work, our dataset
included both poor and good quality videos.

In accordance with the definition of MI abnormalities as stated in [4], this
work focuses on learning the LV wall motion deformations in the A4C view.
Figure 2 shows the A4C view as displayed in one video of our dataset. It con-
tains four distinct heart chambers, numbered from 1 to 4, where 1 identifies
the LV, 2 to 4 identifies the Right Ventricle, the Left Atrium and the Right
Atrium, respectively.

Fig. 2 Apical four-chamber view. The numbers from 1 to 4 marking the four different
chambers correspond respectively to the LV, the right ventricle, the left atrium and the
right atrium



Figure 3 represents captured frames representing the quality of several
videos from our dataset, which varies from good to noisy. Figures from 3a to
3f correspond to distinct frames each captured from different videos. We notice
that in Figure 3a the left wall of the LV is blurred. Also, in Figure 3b, the
left wall of the LV is blurred and almost missing. In the same way, we observe
that the totality of the LV wall is blurred in Figure 3c, and that the interior
of the LV is disrupted with noise in Figure 3d. Finally, both Figure 3e and
Figure 3f show acceptable LV representations, where the LV walls are captured
and the chamber’s interior is empty from noise. Moreover, since our study is
centered on the LV chamber only, we purposely ignore the distortions of the
rest of the cardiac chambers (Right Ventricle, Left Atrium and Right Atrium)
in the dataset videos. For example, in Figure 3e, both the Left Atrium and the
Right Atrium are partially cut from the view, however, this does not impact
our study.

Hence, our final set of videos for segmentation consists of both clear and
blurred video images of the LV chamber.

4 Video Segmentation with 2D CNN

The 2D CNN performs a supervised classification by learning to map the
input echocardiography video to its adequate segmentation mask. Thus, we
manually created segmentation masks that covers the LV chamber from the
A4C view and discards the remaining chambers. The manually created seg-
mentation masks were assigned to the dataset video frames as labels, and fed
to the 2D CNN to learn the best segmentation mask from any given echocar-
diography video. The videos were normalized prior to training the 2D CNN
by means of the sliding window technique due to differences in the dimensions
of the frames.

4 .1 Data Preprocessing for 2D CNN
4 .1.1 Creating labels

The first step was preparing a labelled dataset, where each input is an
echocardiography video frame, and each output is a corresponding segmen-
tation mask. The segmentation masks were manually created and designed
to cover the area of LV from the A4C in all the frames included in a given
video. In each video, at least one cardiac cycle was performed, which means
that we have at least one diastole (when the heart refills with blood) and one
systole (when the heart pumps the blood) per video. The segmentation mask
boundaries were determined such that they form a rectangle that encompasses
the totality of the LV even on the frames where the heart is fully expanded,
i.e. during diastole when the LV reaches its maximum volume. We assigned
one segmentation mask per each echocardiography video. Consequently, the
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Fig. 3 Captured frames from 6 different videos of our dataset, where each image from 3a to
3f corresponds to a distinct video. 3a Represents a blurred left wall in the LV, 3b represents
a missing left wall in the LV, 3c represents blurred LV walls, 3d represents noise inside the
LV, and 3e and 3f represent normal echocardiograms

segmentation mask assigned to a video was the same assigned to each of its
frames. Thus, the final dataset that was used to train the 2D CNN contained
the totality of the video frames as the input samples, and the totality of the
segmentation masks as the labels or the output samples.

4 .1.2 Spatial windowing: segmentation process

The next step was to produce frames of the same spatial dimensions (frame
size). Thereby, we opted for the sliding window technique to create spatial
windows of fixed dimensions, and we applied the technique on both the input
samples and the labels. The technique consists of extracting consecutive win-
dows of equal dimensions with an overlap between two successive windows.



Normally, the dimension of the window must be less than or equal to the orig-
inal dimension of the frame from which it was extracted. Also, the overlap
should be less than the dimension of the window. In Figure 4, we illustrate the
sliding window technique, where it extracts two successive windows with an
overlap equal to 50%. The red square in the figure represents a window and
the green square represents its successive window that overlaps with the read
square by 50%.

By applying the sliding window technique on the dataset, we created win-
dows of dimension equal to 150 x 150 pixels (px), with a 50% spatial overlap
equal to 75 px. The dimensions of the windows are always less than the origi-
nal dimensions of the video frames, where the smallest frame dimension in the
input samples is equal to 422 x 636 px. In this manner, we uniformized and
increased the input samples by producing a total of 108,127 windows.

Fig. 4 Sliding window: the process of extracting two consecutive spatial windows from an
frame with an overlap equal to 50% between the successive windows

The 2D CNN generates an estimation of a segmentation mask for an input
window where each value within the segmentation mask is in the interval
[0,1]. We round these values to obtain a perfect mask with pixel values equal
either 0 or 1. Once the segmentation mask corresponding to each window is
estimated, the complete segmentation mask of a video frame is reconstructed
using the inverse sliding window technique. The technique is performed by
adding the successive estimated segmentation masks of every window from a
certain frame with an overlap equal to 50% until we recover the entire frame.
The reconstructed frame has the same dimension as the original frame cut
from its video. With the same inverse sliding window technique, we recover
all the segmentation video frames and also all the segmentation masks, where
each mask corresponds to a frame. Then, having all the segmentation masks
predicted for each frame of a given video, we aggregate these masks by means
of statistical mode (i.e. the most represented value in each pixel is chosen) to
form the segmentation mask corresponding to the totality of a video.
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(c) (d)

Fig. 5 Captured images from the different stages of the segmentation mask process applied
to a video frame, where 5a represents the original video frame. 5b represents the segmenta-
tion mask corresponding to the frame (a) and obtained from the 2D CNN. 5¢ corresponds
to the minimum bounding box of the predicted segmentation mask in 5b, and 5d is the
segmented frame resulted from multiplying the original video frame 5a by the minimum
bounding box in 5c

Figure 5 encapsulates the process of applying the predicted segmentation
mask on a video frame. Figure 5a shows an original video frame, while Figure
5b shows its corresponding predicted mask recovered from the reverse sliding
window technique, which appears as a set of points with undefined bound-
aries. Hence, to recover a rectangular-shaped segmentation mask we apply
the minimum bounding box technique to enclose the estimated set of points
into a rectangle and to produce a bounding box as shown in Figure 5c. Then,
each video frame is multiplied by its corresponding bounding box to produce
a segmented frame as shown in Figure 5d. The segmented frames belonging
to the same video are then reassembled to produce a segmented video, where
the order of appearance of each segmented frame is kept in its same order of
appearance as in the original video. The segmented video has the same num-
ber of frames as the original video prior to any preprocessing, however, it has
inferior frame sizes.
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4 .2 2D CNN Architecture

Our 2D CNN architecture follows the encoder-decoder design common to
CNNs developed for semantic segmentation problems [37]-[38]-[39]. Figure 6
illustrates the detailed configuration of the 2D CNN consisting of 3 convolu-
tional layers with rectified linear unit (ReLU) as the activation function for
each layer. Every convolutional layer is followed by a max pooling layer to re-
duce the dimension of the window. Then, the convolutional layers are followed
by 3 transpose convolutional layers [40] with a stride equal to 2 x 2 in order to
reacquire the initial input dimension. Each transpose layer uses a ReLU as its
activation function. The last layer is a convolutional layer with a sigmoid acti-
vation function, which was selected to produce a predicted segmentation mask
with pixel values equal to probabilities between the range of [0, 1]. The input
and output dimensions are 150 x 150 px, which correspond to a segmentation
mask adequate for the input window.

64@(7x7) 32@(7X7) 1 g(3x)
64@(5%5) 2@ESE) | |
— 8@(3x3) - i
32@(3x3) 2@33) -
Max Max Max
" Pooling " Pooling Pooling b ' )

Fig. 6 The architecture of the 2D CNN

5 MI Detection with 3D CNN

In this section, we give details of MI detection with 3D CNN of segmented
echocardiography videos obtained from a 2D CNN. However, these segmented
videos have different number of frames and different dimensions. In the fol-
lowing section, we give preprocessing details of segmented videos.
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5 .1 Data Preprocessing with 3D CNN

To solve the issue of differences in the spatial dimensions, all the video
frames were scaled down to the smallest video size in the dataset. In our case,
the smallest frame size from the segmented videos is equal to 236 x 183 px.
Then, we applied the sliding window technique to the resized videos in order
to obtain a uniform number of frames. The technique consists of extracting a
temporal window created from a consecutive number of frames from a given
video and repeating the process by going over all the video frames with re-
spect to an overlap between two successive temporal windows. In general, the
overlap size is inferior to the temporal window size. The technique allows di-
viding the dataset videos into smaller temporal windows of a fixed number of
frames. It also allowed us to increase the number of samples for the 3D CNN
from 165 segmented video to 2000 temporal windows. In our case, we applied
the sliding window technique to extract temporal windows of size equal to 5,
7 and 9 frames per window, with an overlap equal respectively to 4, 6 and 8
frames (i.e. the sliding window moves forward by one window per step). By
varying the size of the temporal windows, we created 3 different datasets that
we used to train 3 different 3D CNN models.

We illustrate in Figure 7 the sliding window technique for a temporal win-
dow size equal to 5. The red window represents a temporal window consisting
of 5 successive frames. The green window is the successive temporal window
of the red one that also contains 5 frames, such that the first 4 frames from
the green window are the same as the last 4 frames from the red window. The
labels attributed to these temporal windows are the same as the labels of the
video from which these windows were extracted.

Table 1 shows the number of the temporal windows obtained from the
dataset videos by varying the frame number of the temporal windows. For a
windows size equal to 5, 7 and 9, we obtained respectively 2841, 2511 and 2181
temporal windows from the dataset of the segmented videos.

Table 1 Number of windows obtained by applying the temporal sliding window technique
with different window sizes

Size of the temporal window  Number of windows

5 frames 2841
7 frames 2511
9 frames 2181

In another experiment, we applied a sliding window technique that extracts
spatio-temporal windows from the segmented videos in an attempt to avoid
rescaling the videos to the smallest dimension. The technique consists of com-
bining the temporal and spatial sliding window techniques at the same time.
Even though this process resulted in a larger dataset, the predicted accuracies
were lower than those obtained by simply resizing the segmented videos and
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Fig. 7 Temporal sliding window depicting the process of extracting 2 consecutive temporal
windows of size 5 frames, with an overlap equal to 4 frames between two consecutive windows

applying only temporal sliding window. Therefore, we concluded that the LV
chamber should be fully preserved as a frame in the echocardiography video
in order for the 3D CNN to capture the totality of its details throughout the
process of learning. Cutting the LV chamber from a segmented video by a spa-
tial sliding window will deteriorate the information and will result in a poorer
model.

5.2 3D CNN Architectures

In this section, we explain the architectures of the 3D CNN models used
to train the 3 datasets separately. For each dataset, we used the same model
architecture: same number of layers, same number of neurons and same acti-
vation functions. However, we changed the kernel size for each model to make
it fit with the input dimension of the windows.

Figure 8 shows the architecture of the 3D CNN consisting of 4 3D convo-
lutional layers, 4 2D max pooling layers, and 3 dense layers. The activation
function used for all the layers, both convolutional and dense, except for the
output layer, is ReLU. For the output layer, which consists of one neuron that
contains the prediction probability, we used sigmoid activation function. Table
2 gives the details of the characteristics for each 3D CNN model.
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Fig. 8 The generic architecture of the 3D CNN used to train all the datasets

Table 2 3D CNN characteristics per layer according to the size of the temporal window

Kernel size per window size

Layer No. of neurons 5 7 9
Conv3D 32 3,3,3) (3,3,3) (3,3,3)
MaxPooling - (2,2,1)  (2,2,1) (2,2,1)
Conv3D 32 3,3,2) (3,3,3) (3,3,3)
MaxPooling - (2,2,1)  (2,2,1) (2,2,1)
Conv3D 16 3,3,2)  (3,3,2) (3,3,3)
MaxPooling - (2,2,1)  (2,2,1) (2,2,1)
Conv3D 8 3,3,1) (3,3,2) (3,3,3)
MaxPooling - (2,2,1)  (2,2,1) (2,2,1)
Flatten -

Dense 32

Dense 16

Dense 1

6 Experiments and Results
6 .1 2D CNN: Training and Evaluation Metrics

In order to train the 2D CNN for the task of predicting segmentation
masks, we normalized the data to values in the interval [0,1]. Then, we di-
vided the dataset into disjoint subsets for training and testing, consisting of
80% and 20% of the dataset, respectively. Next, we create a sub-set for the
validation set, to fine-tune the hyper-parameters of the model, equal to 20%
of the 80% of the training set. We trained the model for 100 epochs with a
batch size equal to 256. The total trainable parameters of the 2D CNN are
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equal to 192,617. We used sigmoid activation function for the last layer, and
RMSProp optimizer as the optimization function for the 2D CNN. To evaluate
the model’s performance we used the mean squared error (MSE) as the loss
function. As a result, the MSE is defined as

1 wp—1wy,—1

MSE(IU,UA)) = wnw Z Z [w(w) — UA}(Z‘J‘)]Q. (1)
Woi=0 =0

In Eq. 1, wy and w,, are the window’s height and width, respectively, while
w and w are the actual window and its corresponding prediction, respectively.

All relevant details regarding the training parameters of the 2D CNN are
given in Table 3.

Table 3 2D CNN training parameters

Parameters Values

Input samples (windows) 86,502 (80%)

Input shape (150, 150)
Output shape (150, 150)
Trainable parameters 192,617
Loss MSE
Optimizer RMSProp
Epochs 100
Batch size 256

6 .2 2D CNN: Results and Discussion

We evaluated the model using the test set by calculating the accuracy as
Accuracy(w,w) =1 — MSE(w, ). (2)

The model achieved 97.18% accuracy over the test set. While the accuracy is
good, we believe that our results demonstrate that the segmentation masks
predicted pixel-wise by the 2D CNN for the LV chamber from the A4C view
are more precise than the manually extracted segmentations masks.

6 .3 3D CNNs: Training and Evaluation Metrics

For the 3D CNN experiments, we split the dataset into training and test
sets consisting of 80% and 20% of the dataset, respectively. Since the MI
detection is a binary classification, we ensured that the dataset is balanced
with respect to N and MI classes. Then, we applied 5-fold cross-validation
(CV) [41] on each 3D CNN model. We evaluated the trained models using
their corresponding test sets. However, our goal is to predict the class of a
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complete echocardiography video rather than the class of a temporal window.
Thus, to calculate the evaluation metrics of the 3D model over the task of MI
detection per video, we assigned a prediction class to each video as the result
of the statistical mode calculated over all the predicted classes of the windows
constituting that video.

The evaluation metrics used to assess the performance of the models are

True Positive

Precision — 7
recision True Positve + False Positive
True Positive
Recall = )
ced True Positve + False Negative an (3)
Fl score — 9 Precision x Recall

precision + recall

To train the models, we used the same loss function, learning rate, and
optimizer, however, the input shape varies between the models as shown in
Table 4. We used binary cross-entropy as the loss function, and the RMSProp
optimizer with a learning rate equal to le™3. Per each fold, we trained the
model for 100 epochs using a batch size equal to 8 samples. We calculated the
evaluation metrics per video for each fold associated with each model.

To implement the 3D CNN models, we used the Python programming
language and its open-source neural network library Keras [42]. We run the
experiments on an NVIDIA Tesla P100 GPU server with 12GB of GPU mem-
ory.

Table 4 3D CNN models’ training parameters per window size

Window size

Parameters 5 7 9

Input samples (windows) 2273 2009 1745
Input shape (236,183,5)  (236,183,7) (236,183,9)
Trainable parameters 57,977 68,345 74,105
Loss Binary CrossEntropy
Optimizer RMSProp

Learning rate le™3

Epochs per fold 100

Batch size 8

6 .4 3D CNNSs: Results and Discussion

Table 5 shows the results of the evaluation metrics, as produced by the fully
trained 3D models using 5-fold CV and calculated with their corresponding
test sets. Only the highest, lowest and mean values are given.

The best results of our models were 90.9% of accuracy, 92.3% F1 score,
100% precision and 95% recall. However, the mean values for the evaluation
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metrics are slightly lower than the maximum values, and this is explained by
the fact that the training sets contain distinct training samples, where some
of the windows contain more noise and hence are of poorer quality than other
windows. Therefore, even though all the sets contain balanced and equal pro-
portions of samples representing both classification classes, some of the folds
may contain more noisy samples than the remaining folds, which influences
the learning performance of the model at each fold. Hence, the model trained
over the dataset of windows with size equal to 5 frames, achieved 84.6% as
the mean accuracy over the 5 folds of the CV, 86.1% as the mean value of the
F1 score, 89% precision and 85.1% the mean value of the recall. Furthermore,
we observe that the mean values of the evaluation metrics obtained from the
dataset of windows equal to 7 frames, are slightly inferior to those attained
from the dataset of windows with size equal to 5. Likewise, the mean values of
the evaluation metrics achieved over the dataset of windows equal to 9 frames,
are less than those obtained over the windows of size equal to 7 frames. The
mean values of the metrics obtained from the second dataset (window size 7)
are respectively equal to 82.5% of accuracy, 83.5% of F1 score, 83.5% of preci-
sion and 83.1% of recall, whereas, the values obtained from the third (window
size 9) are respectively equal to 81.3% of accuracy, 83.1% of F1 score, 84.6%
of precision and 82% of recall. Thus, we conclude that enlarging the size of
the temporal window reduces the performance of the 3D CNN.

Table 5 3D CNN models’ evaluation metrics per window size

‘Window size

Evaluation metrics 5 7 9

Max 90.3 % 90.9 % 90.0%
Accuracy Mean 84.6 % 825 % 81.3 %
Min 771 % 729 % 68.4 %
Max 92.3 % 92.3 % 92.3 %
F1 score Mean 86.1 % 835 % 83.1 %
Min 76.4 % 75.0 % 68.4 %
Max 94.7 % 100 %  94.7 %
Precision Mean 89.0% 835 % 84.6 %
Min 73.0 % 75.0 % 722 %
Max 95.0 % 94.7% 90.0 %
Recall Mean 85.1 % 83.1% 82.0 %
Min 65.0 % 75.0 % 65.0%

7 Conclusion and Future Work

The main motivation of this work is to assist cardiologists with improv-
ing the MI detection accuracy by integrating DL and ML into the diagnostic
process. This system replaces the time-consuming manual preprocessing by a
fast and reliable LV segmentation, and improves MI detection by suggesting to
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doctors an alternative MI-prediction result of high accuracy within real-time.
Our 2D CNN for video segmentation achieved a high accuracy of 97.18% in
segmenting LV from the A4C, exceeding in time and precision manual prepro-
cessing and showing that it could be very reliable and valuable to cardiologists.
Moreover, our 3D CNN demonstrates that real-time prediction of MI from a
patient’s echocardiography is feasible and efficient. It achieved at best 90.9%
accuracy, 100% precision, 92.3% F1 score and 95% recall. We believe that
our 3D CNN assessment was impacted by the small number of video samples
in our dataset. Noisy and low-quality echocardigraphy decreased the ability
of the 3D CNN to extract features and detect MI from the segmented LV
view. Nevertheless, our results demonstrates the robustness and efficiency of
the models, which were able to detect MI in all the videos regardless of its
quality. Accuracy, precision, recall as well as F1 score vary depending on the
temporal window size. We relate this variability to the difference in the 3D
CNN model’s characteristics, which may alter the ability of the model to ex-
tract relevant prediction features with the given neuron and layer parameters.
The 3D CNN models were built with the objective of assigning few layers and
neurons that are able to extract relevant spatio-temporal features from the
temporal windows without focusing on irrelevant details that would decreases
the prediction accuracy. For our future work, we aim to merge our end-to-end
automated pipeline into an embedded system using TensorRT [43]. In addi-
tion, we aspire to improve our model’s results by enlarging the dataset with
more echocardiography videos [44].
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